679 research outputs found

    The Cheshire Cap

    Get PDF
    A key role in black hole dynamics is played by the inner horizon; most of the entropy of a slightly nonextremal charged or rotating black hole is carried there, and the covariant entropy bound suggests that the rest lies in the region between the inner and outer horizon. An attempt to match this onto results of the microstate geometries program suggests that a `Higgs branch' of underlying long string states of the configuration space realizes the degrees of freedom on the inner horizon, while the `Coulomb branch' describes the inter-horizon region and beyond. Support for this proposal comes from an analysis of the way singularities develop in microstate geometries, and their close analogy to corresponding structures in fivebrane dynamics. These singularities signal the opening up of the long string degrees of freedom of the theory, which are partly visible from the geometry side. A conjectural picture of the black hole interior is proposed, wherein the long string degrees of freedom resolve the geometrical singularity on the inner horizon, yet are sufficiently nonlocal to communicate information to the outer horizon and beyond.Comment: 64 pages, 8 figures. Version 2: References added, together with substantial elaborations and clarification

    Discharge forecasts in mountain basins based on satellite snow cover mapping

    Get PDF
    The author has identified the following significant results. A snow runoff model developed for European mountain basins was used with LANDSAT imagery and air temperature data to simulate runoff in the Rocky Mountains under conditions of large elevation range and moderate cloud cover (cloud cover of 40% or less during LANDSAT passes 70% of the time during a snowmelt season). Favorable results were obtained for basins with area not exceeding serval hundred square kilometers and with a significant component of subsurface runoff

    Modeling Quantum Gravity Effects in Inflation

    Full text link
    Cosmological models in 1+1 dimensions are an ideal setting for investigating the quantum structure of inflationary dynamics -- gravity is renormalizable, while there is room for spatial structure not present in the minisuperspace approximation. We use this fortuitous convergence to investigate the mechanism of slow-roll eternal inflation. A variant of 1+1 Liouville gravity coupled to matter is shown to model precisely the scalar sector of cosmological perturbations in 3+1 dimensions. A particular example of quintessence in 1+1d is argued on the one hand to exhibit slow-roll eternal inflation according to standard criteria; on the other hand, a field redefinition relates the model to pure de Sitter gravity coupled to a free scalar matter field with no potential. This and other examples show that the standard logic leading to slow-roll eternal inflation is not invariant under field redefinitions, thus raising concerns regarding its validity. Aspects of the quantization of Liouville gravity as a model of quantum de Sitter space are also discussed.Comment: 43 pages, no figure
    corecore